II B.Tech - I Semester - Regular / Supplementary Examinations DECEMBER 2023

NUMERICAL METHODS AND COMPLEX VARIABLES

 (Common for ECE, EEE)
Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

| | | | BL | CO | Max.
 Marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | a) | Using method of false position find a positive
 root of equation $x^{3}-2 x+0.5=0$. | L 3 | CO 2 | 7 M |
| b) | From the following table of values of $f(x)$ and
 $x, ~ e s t i m a t e ~$$(0.29)$. | | | | |

UNIT-II

3 a) Evaluate the first derivative at $x=-3$ from the following table.

x	-3	-2	-1	0	1	2	3
y	-33	-12	-3	0	3	12	33

b) Use suitable method for estimating

$$
\int_{0}^{\frac{3 \pi}{2}} x e^{x} \sin x d x \text { by taking } n=4
$$

OR

4 Using Taylor's series method, compute the solution | $\begin{array}{l}\text { of } \frac{d y}{d x}=x+y, y(0)=1 \text { at the point } x=0.2 \\ \text { and } 0.4 \text { correct to three decimal places. }\end{array}$ |
| :--- |

UNIT-III

5 a) Show that the real and imaginary parts of

$$
f(z)=\left\{\begin{array}{cc}
\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}} & \text { if } z \neq 0 \\
0 & \text { if } z=0
\end{array}\right.
$$

L4 CO5 7 M
satisfies Cauchy-Reimann(C-R) equations at $z=0$, but $f(z)$ is not analytic at the origin.
b) Let $f(z)=u+i v$ be an analytic function such that $u-v=(x-y)\left(x^{2}+4 x y+y^{2}\right)$. Construct the L3 CO3 7M function $f(z)$ in terms of z.

OR

6 a) Find an analytic function $f(z)$, whose real part is $f(z)=\frac{\sin 2 x}{\cosh 2 y-\cos 2 x}$

Lu 4 CO 5 7 M
b) Find an analytic function whose real part is $e^{-x}(x \sin y-y \cos y)$

L 3	CO 3	7 M

UNIT-IV

OR

8 Find Laurent's series expansion of $f(z)=\frac{4-3 z}{z(1-z)(2-z)}$ in the following regions
i) $0<|z|<1$
ii) $1<|z|<2$
iii) $|z|>2$
$\begin{array}{llll}\mathrm{L} 3 & \mathrm{CO} 3 & 14 \mathrm{M}\end{array}$

UNIT-V

9
Evaluate $\int_{C} \frac{e^{2 z}}{z^{3}(z-1)^{2}} d z \quad$ where C is the circle $\begin{array}{llll}\mathrm{L} 3 & \mathrm{CO} 3 & 14 \mathrm{M}\end{array}$ $|z|=2$ using Cauchy residue theorem.

OR					
10	a)	Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta}, a>b>0$, using the residue theorem.	L3	CO3	7 M
	b)	Evaluate $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$ using contour integration.	L4	CO5	7 M

